Higher neutrino mass allowed if Cold Dark Matter and Dark Energy are coupled
نویسنده
چکیده
Cosmological limits on neutrino masses are softened, by more than a factor 2, if Cold Dark Matter (CDM) and Dark Energy (DE) are coupled. In turn, a neutrino mass yielding Ων up to ∼ 0.20 allows coupling levels β ≃ 0.15 or more, already easing the coincidence problem. The coupling, in fact, displaces both P (k) and Cl spectra in a fashion opposite to neutrino mass. Estimates are obtained through a Fisher–matrix technique.
منابع مشابه
8 Higher neutrino mass allowed if DM and DE are coupled
Cosmological limits on neutrino masses are softened, by more than a factor 2, if Dark Matter and Dark Energy are coupled. In turn, a neutrino mass yielding Ων up to ∼ 0.20 allows coupling levels β ≃ 0.15 or more, already easing the coincidence problem. The coupling, in fact, displaces both P (k) and Cl spectra in a fashion opposite to neutrino mass. Estimates are obtained through a Fisher–matri...
متن کاملReinterpreting MOND: coupling of Einsteinian gravity and spin of cosmic neutrinos?
Several rare coincidences of scales in standard particle physics are needed to explain (i) why neutrinos have mass, (ii) why the negative pressure of the cosmological dark energy (DE) coincides with the positive pressure of random motion of dark matter (DM) in bright galaxies, (iii) why Dark Matter in galaxies seems to have a finite phase-space density, and to follow the Tully-Fisher-Milgrom re...
متن کاملRelic Abundance of Mass-Varying Cold Dark Matter Particles
In models of coupled dark energy and dark matter the mass of the dark matter particle depends on the cosmological evolution of the dark energy field. In this note we exemplify in a simple model the effects of this mass variation on the relic abundance of cold dark matter. We still do not know the origin and composition of the cold dark matter (CDM) in the universe. Recent precision measurements...
متن کاملCold + Hot Dark Matter after Super-kamiokande
The recent atmospheric neutrino data from Super-Kamiokande provide strong evidence of neutrino oscillations and therefore of non-zero neutrino mass. These data imply a lower limit on the hot dark matter (i.e., light neutrino) contribution to the cosmological density Ων > ∼ 0.001 — almost as much as that of all the stars in the universe — and permit higher Ων . The “standard” COBE-normalized cri...
متن کاملThe Detection of Cold Dark Matter with Neutrino Telescopes
High energy neutrinos are produced by the annihilation of dark matter particles in our galaxy. These are presently searched for with large area, deep underground neutrino telescopes. Cold dark matter particles, trapped inside the sun, are an abundant source of such neutrinos. The realization that astronomy and particle physics have independently developed compelling arguments for new physics at...
متن کامل